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A projection operator method is presented, which provides the most effi- 
cient way for calculating the stationary behavior of nonlinear Brownian 
motion. A continued-fraction expansion of the Fourier-Laplace transform 
of the displacement correlation function or the spectral density is used. 
This method utilizes a successive optimization procedure on the nonlinear 
terms and includes the method of "statistical linearization" as the lowest 
order approximation. A systematic way to calculate the continued fraction 
numerically up to sufficient order for convergence is developed, which 
enables us to obtain the spectral density of a system previously uncomputable. 

Numerical computations of the spectral density of a nonlinear oscil- 
lator with a double-well potential are presented and compared with the 
results obtained by statistical linearization. 

KEY WORDS: Brownian motion; nonlinear; oscillator; double-well 
potential ; projection operator method ; continued fraction. 

1, I N T R O D U C T I O N  

The theory of Brownian mot ion  has been and still is one of the most  fruitful 

subjects in classical physics and related fields. (1-1~ In  the classical theory of 

Brownian  mot ion  we usually start from a phenomenological  stochastic 
equat ion  such as 

~j( t )  = vj( t )  
(1) 

fJs(t) = - % v s ( t )  + F~.(x) + Rs(t) ,  j = 1 ..... d 

which is a simple example of the Langevin equat ion for a Brownian particle 
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with mass m (= 1) in a potential field V(x) [Fj(x) = -~V/~xj] in d-dimen- 
sional space. The random force Rj(t) is assumed to be Gaussian and 5- 
correlated, i.e., 

(Rj(t)) = 0, (Rj(t)R~(t')) = 2Dj3s~(t - t'), j, k = 1 ..... d (2) 

where (...) denotes an average over an ensemble of the stochastic variables 
Rj(t). The diffusion constant Dj is related to the friction constant c~j through 
the fructuation-dissipation theorem 

Dj = atkT (3) 

where k is the Boltzmann constant and T the temperature of the system. (5~ 
The Fokker-Planck equation for the probability distribution f (x ,  v, t), 

corresponding to the Langevin equation (1), is given by 

~tf(x ,  v, t) : ~f (x ,  v, t) (4) 

= j=l c~J ~--vvj vs + a j  ~ - vj ~ - Fj(x) Fvj (5) 

The stationary solution of this equation is expressed by the canonical 
distribution, i.e., 

f~t(x, v ) =  J V ' e x p ( - k ~ [ ~  + V(x)]} (6) 

There are two different kinds of dynamic behavior of the system. One 
is a transient motion from an initial nonstationary distribution, and the 
other is a stationary motion. In a linear system those two types of behavior 
should be identical, which is the fundamental point of the Onsager's theory 
of irreversible processes. (6> In a nonlinear case, however, these are quite 
different from each other and should be considered separately, except in the 
case where the initial nonstationary distribution is close to the stationary 
one. We will exclusively focus our attention on the stationary behavior, par- 
ticularly on the stationary correlation functions or the spectral densities. 

Several methods have been used to obtain the spectral densities, such 
as the method of statistical or equivalent linearization, the (renormaIized) 
perturbation method, eigenvalue and eigenfunction analysis, and the projec- 
tion operator method. It is quite important to know when each method gives 
good results qualitatively and quantitatively and when it does not. 

The method of statistical linearization is widely used in engineering fields 
and is a primitive approximation. <11,12~ It used to be believed to provide 
qualitative information. Recently this method has been investigated exten- 
sively in connection with the correction terms obtained by the other 
methods. (18'~> The (renormalized) perturbation method is quite popular for 
obtaining quantitative results. (8"1~ However, this method is not convenient 
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Fig. 1. Shape of  the  model  potent ia l  V(x). 
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for a system where some harmonic terms of V(x) are, for example, negative. 
In order to get meaningful physical results for the system by this method, 
we have to carry out impractically high-order renormalization, due to the 
instability of the unperturbed parts. The eigenvalue and eigenfunction 
analysis cannot be applied to our case because it is quite difficult to obtain 
the eigenvalues and eigenfunctions of the operator (5), except in a few 
special cases. 

The most useful and efficient way for the general cases will be shown to 
be the projection operator (Nakajima-Zwanzig) method (15> or the Mori 
method, (t~ which can be shown to be equivalent. This method has been 
widely used for nonequilibrium statistical mechanics. (z7-19~ As for simple 
Brownian motion, Bixon and Zwanzig applied the method to a Duffing 
oscillator. (9~ In spite of its usefulness, the projection operator method has 
hardly been used outside the field of nonequilibrium statistical mechanics. 
We will present the explicit calculation formulas for the spectral densities 
in the general cases, and demonstrate the power of the method for appro- 
priate model systems in this paper. 

We will choose model systems in order to illustrate the points discussed 
above. For simplicity we will consider the one-dimensional oscillator with 
a double-well potential, in which the potential field V(x) is assumed as 
(Fig. 1) 

V(x)  = - � 8 9  2 + �88 ~ (7) 

where E = 1. If  E = - 1, the model will be the Duffing oscillator. The non- 
linear oscillator with a double-well potential has been investigated in 
various fields, especially with regard to ferroelectrics and structural phase 
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transitions. (21)'2 For these nonlinear oscillators we have not yet found the 
effects of various constants on the spectral density, such as narrowing, 
broadening, and shifts of resonant peaks. We will investigate these effects by 
calculating the exact spectral densities, and compare them with the corre- 
sponding quasiharmonic approximants. 

In Section 2 we apply the projection operator method to the Fokker-  
Planck equation (4) and obtain a linear non-Markovian equation. Statistical 
linearization is discussed in the relation to the projection operator method. 
In Section 3 we find the expressions for the stationary correlation functions 
(or the spectral densities) and the linear response functions (or the dynamic 
polarizabilities). We show a formula to calculate the memory kernel and 
discuss its lower order approximations in Section 4. The nonlinear oscil- 
lator with a double-well potential (7) is analyzed in Section 5. For the pur- 
pose of comparison with previous work we also calculate the spectral density 
for the Duffing oscillator. 

2. PROJECTION OPERATOR M E T H O D  AND STATISTICAL 
LINEARIZATION 

We introduce the projection operator ~, which projects a function onto 
a particular subspace of interest. The important properties in the study of 
Brownian motion are the motions of mean values of velocities and dis- 
placements, and their correlation functions. If  we are concerned with these 
properties, the best choice of the projection operator is given by 

~ h ( x , v ) = h o f ~ t +  ~, ( xj vj )  hx, + (8) 

where 

(9) 
h~, = f f dx dv v,h(x, v) 

The average ('">~t is taken with the stationary distributionf~t, so the mean- 
squared velocities and the mean-squared displacements are given by 

<vivj>~t = kTSid, <x~xs>st = (x~2>~tSi.j (10) 

In" order to obtain the equations of motion for the mean values, we 
operate with the projection operator ~, defined by Eq. (8), on the Fokker-  

2 Analytic calculations on a classical oscillator with the potential (7) were given by 
OnoderaJ 2~ His model corresponds to the limiting case where the random force is 
infinitesimally small. 
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Planck equation (4). The projected probability distribution will obey the 
following equation: 

3af(x, v, t) = ~ f ( x ,  v, t)  - ds k ( s ) ~ f ( x ,  v, t - s )  + g(x, v, t) 

( l l )  
where 

k(s) = - ~ ( 1  - ~ ) e m - ~ ( 1  - ~ ) ~  (12) 

g(x, v, t) = ~ ( 1  - 8a)e t(1-~)~(1 - ~ ) f ( x ,  v, 0) (13) 

The mean values of the velocities and the displacements defined by 

<vj; t> = f f dxdvvjf(x, v, t) (14) 

<x,;t)=ffdxdvxjf(x,v,t), j = l  ..... d (15) 

are given by coefficients of the function ~f (x ,  v, t). From Eqs. (5) and (9) 
the coefficients of ~ h ( x ,  v) obey the following relations: 

[~h]o = 0 (16) 

[~h]x, = hv, (17) 

= + f f v) (18) 

The equations of motion for the mean values will be obtained by the com- 
parison of the coefficients of ~ f (x ,  v, t) on both sides of Eq. (11) with the 
above relations. The result is 

a' <x;; t> = <vj; t> 
dt 

d 
(vj-; t )  = - % @ j ;  t )  -- ~s2<xj; t )  

- ds Kjk (s ) (vk ;  t -- s )  + Yj( t ) ,  j = 1 ..... d 
k = l  

where 
(19) 

~ ?  = <x;F;(x)>st 
<x?)~t (20) 

K~(s) = <v~>at f f dx dv 

x [Fj(x) + ~j=xs]e~(1-~)~[Fk(x) + ~z=xk] f s t  (21) 

Y, ( t )  = f f d x  dv [F,(x) + fl,=x,]e t(*-a)~(1 - ,~)f(x, v, O) (22) 
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The functions Yj(t) are the terms that cannot be described by the quantities 
(xj; t} and (vj; t} ( j  = 1,..., d), and come from the part of the initial 
distribution that does not belong to the subspace of the projection operator. 

The equations of motion for the mean velocities and the mean displace- 
ments are not obtained in closed forms because of the existence of Yj(t). 
Only when the function (1 - ~ ) f ( x ,  v, 0) vanishes or is vanishingly small 
do the equations become homogeneous. This is the case as far as the stationary 
correlation functions and the linear response functions are concerned (see 
the next section). 

It is quite instructive tO interpret Eq. (19) from a different point of view. 
We will take the average of the nonlinear Langevin equation (1) over the 
ensemble of the random forces, denoted by (...). Then it is obvious from 
causality that 

(Rj ( t )x j ( t ' ) )  = 0 if to < t '  < t 
(23) 

(Ry(t)xy(t')} ~ 0 if  to < t < t '  

where the initial time to is taken to be zero. The initial displacements xj(0) 
are assumed to be statistically independent of Rj(0). Now we consider the 
optimal linear approximation for the nonlinear force terms, using a varia- 
tional procedure. We denote the linear approximation by ~jTj.xj and 
determine the coefficients ~,y by the following condition: 

W ( y ) =  ~ j . ~  [Fj(x) -}gxj][Fk(x  ) - y~xk]~t = min (24) 

where the average is taken over the stationary distribution, because we are 
mostly interested in the stationary behavior. From Eq. (24) the function 
tF(y) satisfies the equation 

tF(v) = 0, j = 1 ..... d (25) 

From the set of equations (25) we can obtain yj as 

yj = (xj2}~; 1 ~ (Fj(x)xk}st = -- f2j 2 (26) 
k 

The effective frequency f2j defined by Eq. (20) is shown to be identical with 
the one obtained by statistical linearization. The equations of motion 
averaged over the ensemble of the random forces are given by 

d 
d-t (xj(t)} - (vj(t)} = 0 

(27) 
d (v j ( t ) )  + aj(vj(t))  + ~2j2(xj(t)} = r j = 1 ..... d 
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where 

(x~(t)) = [exp(t~*)]xj, (vj(t)) = [exp(tN*)]vj (28) 

r = (Fj(x) + f~j2xj(t)) = [exp(t~*)][Fj(x) + Dj2xj] (29) 

9 '  = - cgv' ~ + i D, ~ + v, ~ + F,(x) (30) 
] = 1  

Within the variational procedure it is not clear how to treat the nonlinear 
force terms qS~(t) in Eq. (27). The simplest approximation is given by neg- 
lecting all effects of ~j(t), which corresponds to statistical linearization. The 
resulting linear system is quite simple to analyze, but its usefulness as an 
approximation depends entirely on the property of the nonlinear forces 
&(x). We will examine its adequacy for specific models in a later section. 

If  more accurate results are wanted than those obtained by statistical 
linearization, the nonlinear force terms ~j(t) should be taken into considera- 
tion. In Eq. (27) the initial distribution, which is always Gaussian within 
statistical linearization, is not specified. In the general case, however, we have 
to know about the initial distribution f (x ,  v, 0). We already know the exact 
expression for the equations of motion in Eq. (19). The two average 
expressions in Eqs. (19) and (27) are given by 

<x,; t) = f f dxdvf(x, v,O)(x,(t)) 
(31) 

j =  1, . ,d 

Comparing Eq. (27) with Eq. (19), we can see that the nonlinear force terms 
6j(t) can be separated into two different parts, a systematic part and a 
random part. The former causes friction with memory, because the non- 
linear force terms are not &correlated, and the latter is the residual part, 
which cannot be described within the subspace given by the projection 
operator ~. The systematic part has the same dependence on the initial 
distribution as do (x(t))  and (v(t)). 

3. C O R R E L A T I O N  F U N C T I O N S  A N D  RESPONSE F U N C T I O N S  

The principal dynamical quantities of interest are the correlation 
functions, especially the stationary ones. The stationary correlation function 
of the displacement Cje(t) is defined by 

G~(t)  = <xXt)x~(O)>~t 

= f f dx dv xje*~x~f~t(x, v) 

= (x~(xs(t)))~t (32) 
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where (xj(t))  introduced in Eq. (28) is the average displacement over the 
ensemble of the random forces. The last part of Eq. (32) explicitly expresses 
the two different averages in the definition of Cj~(I). From the definition we 
see that Cj~(t) is mathematically the same as the average displacement (xj(t))  
for the initial distribution 

f (x ,  v, 0) = x~f~t(x, v) (33) 

The function ~Yj(t) in Eq. (19) vanishes in this case, so the correlation function 
obeys the equation 

dt---- ~d2 Cjk(t) + ~j--dtd Cjk(t) + ds Kj,(s)-dt C,k(t - s) + ~)s~Cs~(t) = O 

(34) 

This equation is exact and all unknown factors are put into the memory 
kernels Ks~(s). 

The spectral density S~(o2) is given by the real part of the Fourier- 
Laplace transform Cjk(o~) of Cj~(t), i.e., 

S~.~(o 0 = Re Cj~(o~) 

fo Cj~(~o) = dt eU~ 

From Eqs. (34) and (36) we can obtain 

~. {(-~o 2 + E2y 2 -- ioJcq)3j, - ioJ/(jz(oJ)}~m(oJ ) 
1 

= ~, {(-ioJ + %)3j. 1 + /~jz(oJ)}(xz2>~t 
1 

(35) 

(36) 

(37) 

where /~jk(~o) is the Fourier-Laplace transform of Kjk(t). Introducing the 
matrix representation, we can rewrite Eq. (37) as 

~(~) = ~(o~)a(o~)C(O) (38) 

where 

(C(o,))j~ = G~(o,) ,  (c(0))j~  = (x;2>s&~ 

(~-l(co))jk = (-~o 2 + s 2 - ico%)Sj~ - io2/~jk(o2) (39) 

(a(o~))j~ = -(1/o~)[(a-l(,o))s~ - ~j%~]  

Using the relations between the matrix elements of -"- and A, we obtain 

C.(~o) = - (1/io~)C(O) + (kT/ioO.~.(o 0 (40) 

Sj~(co) = (kT/~o) Im Ejk(o~) (41) 
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The other correlations, such as the velocity-velocity and velocity-displace- 
ment correlations, can be obtained in the same manner. 

Relation (41) is nothing but the fluctuation-dissipation theorem in the 
classical linear response theory/22'5) We will show that the dynamic 
polarizability is given by Ej~(o~). 

Suppose an external electric field E(t) is put upon the system. The 
Fokker-Planck equation (4) is modified as 

where 

~t f (x ,  v, t) = [~  + ~ext(t)]f(x, v, t) (42) 

~e,t(t) = - ~  Ej(t) ~ (43) 

At t ~< 0 the system is in a stationary state and at t > 0 the external field is 
applied. Then we can write the deviation of the mean displacements as 

(xj(t)} = (xj}st + ~, f~ ds Xs~(t - s)Ek(s) (44) 

where the response function Xj~(t) is defined by 

Xj~(t) = f f dx dv x~e'~(-8/Svk)f~t(x, v) (45) 

From Eq. (6) the response functions are given by the velocity-displacement 
correlation 

Xj~(t) = (1/kT)(xj(t)v~(O))~t (46) 

Using the same procedure for the displacement-displacement correlation 
functions we can find the following expression for the dynamic polarizability 

2j~(oJ) = Ej~(o~) (47) 

Therefore from Eq. (41) we obtain the relation 

Sj~(co) = (kT/o 0 Im 2j~(~o) (48) 

which is the fluctuation-dissipation theorem in the classical limit5 s~ 

4. M E M O R Y  K E R N E L S  

We have shown in the previous sections how to calculate the correlation 
and response functions. All we have to know is the memory kernel Kjk(t) 
or its Fourier-Laplace transform/s The most efficient way to calculate 
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Rjk(a 0 is, I believe, the continued fraction representation formulated by 
Mori, (16) which is essentially a successive optimization procedure on the 
nonlinear terms. 

The continued fraction representation for Rjk(o~) is obtained as 

'f;  Rjk(oJ) = ~ dx dv [Fj(x) + f2j2xj] 
\ k /st; d ,  

x [ - i w  + (1 - ~a)~]-Z[Fk(x) + ~2xk]f~t 

A(O) [ A<I) ]k jk  [ A(2) 
_ = , k  [ . . . .  ( 4 9 )  

- i w  + B a) - i w  + n<m - i w  + n<a) 

Here the constants A<z> and n"+~> (l = 0, 1, 2,...) are calculated by the corre- zajk ~ ' jk  
sponding optimization. Practically, however, we will use the relation between 
the continued fraction and the moment expansion, which is given, for example, 
in Ref. 23. The moment expansion of Rjk(w) is expressed by 

1 (1; 
/(j~(oJ)- io) ~ K}~) (50) 

r~=O 

where 

1 f f d x d v  [Y j (x )  -t- ~ j 2 x t ] [ ( 1  - -  ~ ) ~ ] m [ F / ~ ( x )  + ~'~k2xk]fst  K}~ ) -  <v 2)st 
(51) 

In order to obtain the values of the vm) in a systematic way, we introduce 
the functions C/~(x; n~ ..... na) such that 

[(1 - -  ~ ) ~ ] m [ F k ( x  ) -37 ~ k 2 x k ] f s t  = 

where we define 

~. Ckm(X; nl ..... na)v~ l'''v]af~t 
~i "'" 71d 

(52) 

c la m (x ;  tl 1 . . . . .  ha )  = 0 (53) 

when at least one of the integers np (p = 1 .... , d) becomes negative. From 
the successive operation of (1 -~@)N we have the following recursion 
formulas for Ckm(x; nl ..... na): 

(I) For m = 0 and k = 1,..., d, 

Ck~ nl ..... n d ) = I  Fk(x) + f~%~ 
if (nl ..... na) = (0 ..... 0) 

(54) 
if (nl ..... ha) -r (0,..., 0) 
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(II) F o r m = 0 , 1 , 2  .... a n d k =  1 ..... d, 

Cg'§ n~,..., n~) 

= - ~  C2'(x; nl ..... n, - 1 ..... na) 

+ npa~,c~m(x; nt .... ,np ..... na) 

+ (n, + 1)F,(x)C~m(x; nl ..... n~ + 1,..., na) 

- �89 + 2)(n, + 1)O~Czm(x; nz,..., n, + 2,..., na) 

+ (55) 
~(, p) J 

Using the Oaussian properties of the stationary velocity distribution, we 
can get an expression for K~): 

<<.> l),,  (,6, j / c  = - -  - -  �9 

~1,. . .~ n d X  l = 1  

Here and in the next section we denote the average over the stationary 
distribution ('")~t, as (...) without confusion. In order to derive Eqs. 
(55)-(56) we use the following two equalities, which can be easily proven: 

<Ck'(X; nl,..., na)vl, ff-I vi i i )  = 0  (57) 
n l , . . . , n  d I = 1  

( x ,  Ckm(x;nx ..... na) f f - Ivr 'X>=O,  p = l  ..... d (58) E 
Ztl,..., r~ a ~ iml / 

We can summarize the say to calculate/~sk(o~) as follows: 
(a) Obtain the functions ckm(x; n~ .... , ha) for the given force functions 

Fk(x) or for the given potential field V(x) by the recursion formulas (54) 
and (55). 

(b) Calculate K ~  ) by Eq. (56) with C~m(x; n~ .... , ha) obtained in step (a). 
(c) Derive the coefficients ~s~A(~) and -<-s~u"+~) in the continued fraction by 

the transformation formulas from the moment expansion. 
(d) Calculate the/(jk(o~) by Eq. (49) and then the ~jk(o)) and Sjk(co) by 

Eqs. (40) and (41). 
There does not exist a general theory for convergence of the continued 

fraction. We do not consider such a problem in this paper, but leave it to 
the mathematicians. We will assume that the continued fraction converges 
almost everywhere on the real axis in the complex plane of w. Therefore we 
will calculate the nth approximant of the continued fraction (or the [n + 1, n] 
Pad6 approximant) and check the convergence of the successive approxi- 
mants. These procedures will be carried out for specific examples in the 
next section. 
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It is of interest to consider the two lowest order approximations of the 
memory kernels. The lowest order approximant is given by neglecting the 
memory kernels, i.eq 

/(~(o~) = 0 (59) 

The spectral density in this case S~k(o)) is expressed as 

~jkT 8jk (60) 

and it corresponds to the result of statistical linearization or the independent 
quasiharmonic model with effective frequencies ~j and friction constants aj. 
The second lowest approximation is obtained by the first approximant of 
the continued fraction, which is given by 

A(O) 

Kff(~o) = ~ ; k  -io~ + n(1) (61) 

From the coefficients of the moment expansion the .~Jkz(~ and -jkn(1) are 

A(O) @2V/~xj ~xk} - f~jzSjk (62) 

B}}) = 0 (63) 

Substituting Eqs. (61)-(63) into Eq. (41), we obtain the spectral density 
s l i (o~ )  as  

S~(~o) = (kT/o~) Im E~(~o) (64) 

where 

[ExI(~)]-I = [(_ Go2 _ i~c9)3~k + @e V/Oxjaxk)] (65) 

This approximant corresponds to the linearly coupled quasiharmonic model 
in which effective frequencies and friction constants are respectively 
@2V/Oxj2)l/2 and % and the coupling constant between xj and x~ is given 
by @2V/Oxj~xk). In the higher order approximation the memory effects 
appear because of nonlinear couplings and force terms. 

5. O N E - D I M E N S I O N A L  N O N L I N E A R  OSCILLATOR W I T H  
SINGLE-  A N D  D O U B L E - W E L L  POTENTIALS 

We have developed the general method for calculating the spectral 
density and the response functions for nonlinear Brownian motions in the 
previous sections. In this section we will consider as examples the Brownian 
motion of the nonlinear oscillators with single- and double-well potentials 
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in one-dimensional space (d = 1). For simplicity the potential is assumed 
to be expressed with a normalized variable x as [Eq. (7)] 

V(x) = - ~ x  2 + �88 4 

where �9 = _+ 1. The Langevin equation is written as 

2 =  v, b =  -c~v + �9 - x a + R( t )  (66) 

where 

( R ( t ) )  = O, ( R ( t ) R ( t ' ) }  = 2D 3(t - t ') (67) 

When �9 = - 1 ,  Eq. (66) represents a During oscillator, i.e., a nonlinear 
oscillator with a single-well potential. A nonlinear oscillator with a double- 
well potential is obtained by taking �9 = 1. The former case is considered 
for the purpose of comparison with previous work. (~-1~ Our main concern 
is with the latter case. 

The spectral density S(oo), given by 

[~ + v(o,)]kT 
S(w) = [_w2 + ~2 + • (oJ)12 + w2[a + 7(w)]2 (68) 

will be calculated numerically by the method developed in the previous 
sections. Here the real and imaginary part of g(w) are denoted by 

y(~o) = Re R(w) ,  Z(a,) = (l/w) Im g(w) (69) 

Since the potential is expressed as a polynomial in x, the function cry(x; n) 
can be expanded in a power series in x, i.e., 

Cm(x; n) --- ~.  d ~ x  p (70) 
p=O 

Then from Eqs. (54) and (55) the recursion formula for d~v is given as 
follows: 

r ~ + ~  if (n, p) = (0,1) 
/ 

d ~  if (n, p) = (0, 3) (71) 

[o if (n, p) r (0, 1), (0, 3) 

d~% ~ = - ( p  + 1)d~_~,~+~ - n ~ d ~  - �9  + 1)d~+~,~_~ 
+ (n + 1)d~+~,p_3 + (n + 1)(n + 2)akTd~+s, v - K (~) 8~,~ 8p, o 

(72) 

where we again define d ~  = 0 (m = 0, 1, 2,...) for a negative integer n 
or p. From Eq. (57) the coefficients of the moment expansion of /~(a  0 are 
expressed in terms of d ~  as 

K (~) = - ~  (2n - 1)!! (vz}"(2p + 1)(x~'P}d~,zp+~, m -- 0, 1, 2,... 

(73) 
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The second moments of velocity and displacement are calculated using the 
stationary distribution (6), resulting in 

1 d In Z(q) (74) ~v 2) = kT, ~x2) = 2~---~ Y~ 

where q and Z(q)  are defined as 

q = (kT)  -1/2 (75) 

Z(q)  = dy exp[2Eqy 2 - y*] (76) 

The function Z ( q )  is expressed as 

Z(q)  = r(�88 1F1(�88 �89 q2) + 2Ep(3)q ~FI(k, }; q2) (77) 

in terms of the gamma function P and the confluent hypergeometric function 

c~ z ~(c~ + 1)z 2 
1F~(c~, y ; z ) =  1 + ~ + y(y + 1) 2! + (78) 

Higher moments of displacement are given by the recursion formula 

( x  2~+2) = ( x  2~) + kT(2n  - I)(x2~-2), n /> 1 (79) 

( x  ~--~)  = 0 (80) 

The nth approximant of  the continued fraction representation (49) is 
expressed as 

Ro(~,) = 0 (80 

Ao l A1 [ . . . . .  j A.-1 
I~,~(oJ) = _ico + B 1 -  -ico + B2 - ico + B~' n i> 1 (82) 

The approximate spectral density obtained from/~,(oJ) is denoted by S,(o 0. 
The spectral density S0(w) corresponds to the statistical linearization result 
and the exact one is given by 

S(co) = lim S,(co) (83) 
n . . ,  co 

where the convergence is assumed. 
Before doing more calculations for the spectral densities in the case of 

E = 1, we will consider the case of E = - I ,  i.e., the Duffing oscillator, in 
order to compare the results with previous calculations. It should be men- 
tioned that our definition of the diffusion constant D is one-half that used 
in other papers (i.e., D = 1/2 in this case), and that our definition of the 
spectral density is the same as that used in Ref. 9 and differs by factor of 
two from that in other work. The coefficient of the nonlinear term denoted 
by/3 in other work is fixed at unity here. Table I gives the values of three 
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T a b l e  I. C a l c u l a t e d  V a l u e s  o f  S(~o)  f o r  ~ = 2 

a n d  kT = 0 . 2 5  

0 0.242945 0.238229 0.24432 
0.5 0 . 2 0 5 1 2 2  0.205175 0.20141 
1.0 0 . 1 1 6 7 9 2  0.119009 0.11278 
1.5 0 . 0 5 1 3 9 7  0.051856 0.05031 
2.0 0 . 0 2 2 3 1 2  0.022213 0.02219 
2.5 0 . 0 1 0 5 2 5  0.010405 0.01054 
3.0 0 . 0 0 5 4 4 7  0.005375 0.00546 

spectral densities, the first of which is the limit of our method, the second 
the statistical linearization results, and the third the second Kraichnan- 
Wyld approximation (KWII) obtained by Morton and Corrsin/8~ The latter 
has been known as the best approximation, but our results are more accurate 
and more easily obtained than theirs. 

The convergence of {Sn(~o)} occurs quite rapidly in the large-friction- 
constant case, where most approximation procedures yield good results. 
In the case shown in Table I, for instance, the first six digits of $9(0) are 
already correct. In the small-friction-constant case with strong nonlinearity, 
where the KWH results are not available because of a computation stability 
problem, the convergence is naturally slow. Typically 

IS23(0) - $22(0)1/$28(0 ) ~ 0.05 for ~ = 0.5 and kT = 1.0 (84) 

In spite of slow convergence, our method gives reliable results for cases that 
used to be uncomputable. Figures 2 and 3 show the spectral density in two 

S(o,)! 

Fig. 2. Spectral density of the Duffing 
oscillator as a function of frequency in I. 0 
the case o f  = = 2.0 and kT = 0.25. The 
zeroth approximation So(cO) and the limit 
function S(~o) are expressed by dashed 
and solid lines, respectively. Value of the 
effective frequency f2 is shown by the 0 
arrow. 

Ct = 2.0 

I �9 i 

o t . o  -o- 
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S(~)' / ~  
O~ =0.5 

, " ~ i  k T  i o  

0.4 

0 , x , 

o t,o n. 

Fig. 3. Same as Fig. 2, except c~ = 0.5 and k T  = 1.0. 

different cases. The first case (a = 2.0, k T  = 0.25) has been calculated by 
many authors and presents nothing new. The spectral density in the second 
case (a = 0.5, k T  = 1.0), however, is obtained here for the first time. In 
the Duffing oscillator case the statistical linearization or the quasiharmonic 
approximation shown by dashed lines is a qualitatively good approximation 
because the nonlinearity causes no drastic changes in the properties of the 
system. Quantitatively, however, this simple approximation does not yield 
good estimates, especially in the case of small friction constant and strong 
nonlinearity. 

Sn(O). oc =2.o, kT  = I.o 

T 
- - -  c~ = LO, kT-" I.O 

0 0 I0  20 n 

Fig. 4. Zero-frequency value of the normalized spectral density S.(o~) as a funct ion of 
n for the nonlinear oscillator wi th a double-well potential. 
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S(~) 
OC = 2 . 0  

k T  = 2.o 

1.0 "",, ",, 

o L 
o ,5 ~ ' ; 

Fig. 5. Norma l i zed  spectral  dens i ty  o f  the  non l inea r  osci l lator  wi th  a double-wel l  
potent ia l  in the  case o f  c~ = 2.0 and  k T  = 2.0. D a s h e d  and  solid lines as in Fig. 2. 

As discussed above, our method is of great advantage in calculating the 
spectral density. Now we analyze, using our method, the Brownian motion 
of the nonlinear oscillator with a double-well potential, whose spectral density 
has not previously been calculated. In this case, as expected, the convergence 
of the continued fraction is slow, especially at small c~. Figure 4 shows the 
converging pattern of S~(0) for two different cases. The zero-frequency values 

S(~) 

2.0 

Fig, 6. Same  as Fig. 5, except  k T  = 0.5. 0 0 

OC = 2 .0  

kT = o.5 

I- 

s 1.0 co 
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S(~) ~ 

OC= l.O 

I, o- // / /"~,\\  k T : 4. o 

/ "t 

t 

\ 

o J o s ' L  
Fig. 7. Same as Fig. 5, except ~ = 1.0 and k T  = 4.(). 

are used as a measure for  our method fo r  the fo l l ow ing  reason, as discussed 
by Bixon and Zwanzig. (m The moment expansion (50) is a high-frequency 
expansion expected to converge only up to the farthest singularity from the 
origin in the complex frequency plane. The continued fraction is used for 
the analytic continuation of the high-frequency expansion to the entire 
frequency plane. Therefore the values of the continued fraction at the origin 
offer the best criterion for the adequacy of the procedure. 

With a < 1 the limit function S(oJ) is hardly obtained, due to the slow 
convergence of {S,(o~)}. Typically 

1S27(0) - $2d0)1/$27(0) -~ 0.12 for ~ = 0.5 and kT = 1.0 (85) 

In Figs. 5-10 the normalized spectral densities (solid line), given by 

S (~ )  

1.0 

t - -  U.= 1.0 

"' ' \  kT = 2.o /! \ 
/ \ 

/ \ 

i / /  \ 

'\ 

0 I t l ~ 
o 1.0 ~ 

Fig. 8. Same as Fig. 7, except k T  = 2.0. 
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S(~) 

1.0. 

~ 0.. = 1.0 

k T  ~ I.O 

/ /  ,, 

o I.O uj 

Fig. 9. Same as Fig. 7, except k T  = 1.0. 

S(o~) d iv ided  by (x2) ,  and  the normal ized  So(w) (dashed line) are shown in 
several  cases. The curves with a = 2.0 are for k T  = 2.0 and k T  = 0.5 and  
they show a k ind  o f  ove rdamped  behavior  and  na r rowing  effect. The sequence 

o f  curves with a = 1.0 covers a wide range of  t empera tu re  f rom k T  = 0.5 
to k T  = 4.0. A l t h o u g h  So(o) clearly has resonant  charac ter  for  the case 

o f  a = 1.0, the re sonan t  peak  in S(~o) tends to d rop  at  high t empera tu re  and 
d i sappea r  a t  m e d i u m  and low tempera tures ,  while the cen t ra l  peak  rises 

S (,.,o) ' 

1.0. 

0 
Fig. 10. Same as Fig. 7, except k T  = 0.5. O 

(l= 1.0 
= , 

I.o to 
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in the latter cases. As the temperature decreases, the central peak dominates 
and its height becomes of order exp(A/kT), where A is a positive constant 
related to the height ~ f  the potential barrier of V(x). This behavior is to be 
expected, as one can see from the following simple argument: As the tem- 
perature decreases, the height of the barrier that the Brownian particle sees 
increases. This in turn increases the duration of the particle's stay on one 
side of the barrier. Even at high temperature these effects suppress the 
resonant behavior. 

6. C O N C L U D I N G  R E M A R K S  

There have been two main purposes of this paper: to present the general 
method for calculating the spectral density of nonlinear Brownian motion, 
and to present the results of the numerical calculations of the spectral 
density for the nonlinear oscillator with a double-well potential. 

The projection operator method applied in this paper, using the con- 
tinued fraction representation of the spectral density, is the most efficient 
method for calculating the stationary behavior of a nonlinear system. 
Statistical linearization is included in this procedure as the lowest order 
approximation. This method, developed in the field of nonequilibrium 
statistical mechanics, can be applied to widespread problems in engineering, 
which are described by the stochastic differential equations, because the 
method can be used for Brownian motion in an arbitrary potential field, 
provided the system is globally stable. 

The efficiency of our method comes from the use of the exact static 
properties or the exact stationary moments of the quantities of interest. The 
requirement of the exact stationary moments causes no serious problems for 
finite-dimensional systems. In the infinite-dimensional case, or for the 
extension to field theory, however, this requirement is rarely satisfied in 
practice, so a kind of perturbational procedure may be necessary. 

Numerical calculations of the displacement correlation function of the 
nonlinear oscillator with a double-well potential have been performed, using 
a continued-fraction expansion equivalent to exact specification of the first 
56 frequency moments of the spectral density of the correlation function. 
The results of these calculations show fairly good convergence in most 
cases, except in the small-friction-constant case. Comparison between the 
exact and approximate results leads to the conclusion that the approximation 
of a qugsiharmonic oscillator (or statistical linearization) does not always 
give even qualitatively good results if the potential field has a complex 
structure. 

Recently Schneider and Str/issler discussed the same model system as 
we do, as an example. (24) They also investigated Brownian motion in a 
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periodic potential in the large-friction-constant case and 
results with experiments of ionic mobility. (25~,3 
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